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Abstract—Deep Packet Inspection (DPI) lies at the core of
contemporary Network Intrusion Detection/Prevention Systems
and Web Application Firewalls. DPI aims to identify various
malware (including spam and viruses) by inspecting both the
header and the payload of each packet and comparing it to a
known set of patterns. DPI is often performed on the critical
path of the packet processing, thus the overall performance of
the security tools is dominated by the speed of DPI.
The seminal algorithm of Aho-Corasick (AC) [1] is the de-

facto standard for pattern matching in network intrusion detection
systems (NIDS). Basically, the AC algorithm constructs a Deter-
ministic Finite Automaton (DFA) for detecting all occurrences of a
given set of patterns by processing the input in a single pass. The
input is inspected symbol by symbol (usually each symbol is a
byte), such that each symbol results in a state transition. Thus, in
principle, the AC algorithm has deterministic performance, which
does not depend on specific input and therefore is not vulnerable
to algorithmic complexity attacks, making it very attractive to
NIDS systems.
In this paper we show that, when implementing the AC

algorithm in software, this property does not hold, due to the
fact that contemporary pattern sets induce very large DFAs that
cannot be stored entirely in cache. We then propose a novel
technique to compress the representation of the Aho-Corasick
automaton, so it can fit in modern cache. We compare both
the performance and the memory footprint of our technique
to previously-proposed implementation, under various settings
and pattern sets. Our results reveal the space-time tradeoffs
of DPI. Specifically, we show that our compression technique
reduces the memory footprint of the best prior-art algorithm by
approximately 60%, while achieving comparable throughput.

I. INTRODUCTION
One of the fundamental techniques which is used today by

security tools such as Network Intrusion Detection/Prevention
System (NIDS/IPS) or Web Application Firewall (WAF) to
detect malicious activities is Deep Packet Inspection (DPI).
DPI consists of inspecting both the packet header and payload
and alerting when signatures of malicious software appear
in the traffic. These signatures are identified through pattern
matching algorithms, where the patterns are either exact strings
or regular expressions. Today, the performance of the security
tools is dominated by the speed of the underlying pattern
matching algorithms [10]. Moreover, DPI and its correspond-
ing pattern matching algorithms are also crucial building
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blocks for other networking applications such as monitoring
and HTTP load balancing.
This paper focuses on exact string matching, in which the

content of the packet is compared against a predetermined set
of strings (signatures). Specifically, this paper deals with the
Aho-Corasick (AC) [1] algorithm, which is the most common
algorithm used today. The AC algorithm uses a Deterministic
Finite Automaton (DFA) to represent the pattern set. Then,
the input is inspected symbol by symbol by traversing the
DFA. Given the current state and the symbol from the input,
the DFA should determine which state to transit to. A naı̈ve
implementation stores (in a two-dimensional table) a rule for
each possibility; namely, one rule per each state-symbol pair.
This resolves in prohibitively large memory requirement (e.g.,
75 MB for Snort IDS [20] that has approximately 31,000
patterns); yet, a single memory access suffices to resolve what
the next state is.
An alternative approach is to implement AC automata using

the concept of failure transitions. In such implementations,
only part of the outgoing transitions from each state are stored
explicitly. While traversing the DFA, if the transition from
state s with symbol x is not stored explicitly, one will take
the failure transition from s to another state s ′ and look for
an explicit transition from s′ with x. This process is repeated
until an explicit transition with x is found, resulting in failure
paths. A classical result states that the longest failure path is
at most the size of the longest pattern, and that, regardless of
the traffic pattern, the total number of transitions (failure and
explicit) is at most twice the number of symbols. Naturally,
since only part of the transitions are stored explicitly, these
implementations are more compact.
In this paper, we first compare several implementations that

use failure transitions and differ in the way each state of the
automaton is represented. For example, each node can store a
lookup table so that when encountering some symbol x, one
can determine the next state (or, in case of a failure transition,
an intermediate state) in one memory access. On the other
hand, a more compact representation but more time consuming
is to store all explicit transitions in a linked list; if the transition
is not found within the list, one will take the failure transition.
We then propose an implementation that outperforms the

best prior-art ones. Our implementation is based on two
observations: (i) most of the failure transitions go to a small
subset of states, and therefore a short representation of such
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transitions (even on the expense of a longer representations of
other transitions) reduces space considerably; and (ii) there are
very long one-way branches (that is, sequence of consecutive
states in which there is only a single explicit transition from
each state); these one-way branches can be compressed in a
similar manner as in PATRICIA tries; a similar compression,
which was tailored for hardware implementation, was men-
tioned also in [22]; Specifically, we calculated the memory
footprint of the best prior-art representation of Tuck et al. [22]
and show that our representation reduces the memory footprint
of the automaton by 60%, under the pattern sets considered
(namely, [6], [20]). A common metric to evaluate the efficiency
of a representation is its bytes per symbol (namely, the ratio
between the memory footprint and the total number of symbols
in the pattern sets): our implementation requires as low as 3.23
bytes per symbol (see Table I), while the result reported in [22]
is 60.31 bytes per symbol1.
Finally, we implemented all the proposed representations in

software and evaluate the throughput achieved by each of them
on real-life traffic pattern as well as adversarial traffic. Our
results show that, unlike common belief, the naı̈ve implantation
of the AC algorithm has non-constant throughput due to its
huge memory footprint: a relatively simple traffic pattern can
cause the algorithm to have many cache misses and degrades
its performance by as much as 88%. This, in turn, make such
an implementation very vulnerable to Algorithmic Complexity
Distributed Denial-Of-Service (DDOS) attacks [7] that exploit
gaps between worst-case and average-case performance to
launch sophisticated attacks, forcing the device to operate
always in the worst-case scenario. On the other hand, since our
implementation has small memory footprint, it fits almost en-
tirely in L2 cache and therefore is not sensitive to the locality
of the traffic pattern. Algorithmic complexity DDOS attacks
aiming at traversing failure paths reduce its performance only
by approximately 30%. Moreover, our results show that both
the naı̈ve and the failure-transitions–based implementations
have comparable worst-case throughput, while the latter have
two order of magnitude smaller footprint. Finally, Fig. 1
presents the space-time tradeoff of different implementations
of Snort IDS automaton, under worst-case and real-life traffic
pattern. Clearly, under real-life traffic, there is a significant
throughput gain as the memory footprint increases; however,
this gain is almost lost when considering worst-case traffic. In
addition, there is no significant throughput change between our
compressed form of the failure-transitions–based automaton in
its non-compressed form; this implies that our compression
techniques come almost for free.

Paper Organization: The paper is organized as follows:
an overview on the related work is in Section II. Then, in
Section III we provide background information on the Aho-
Corasick algorithm. In Section IV, we first describe the differ-
ent implementations of automata, based on failure transitions.
Then, we present our new implementation and discuss its
1We note that the comparison is on different pattern sets, and therefore,

might be misleading. On the other hand, the reduction of the memory footprint
by 60% was calculated on the same pattern sets.
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Fig. 1. Space-time tradeoff of representative three different implementations
of Snort IDS [20] automaton, under real-life and adversarial traffic patterns.
See Section V for the exact experiment settings.

memory footprint. In Section V we show experimental results
using the two databases of Snort [20] and ClamAV [6], under
two testing environments: one with relatively small cache and
another with very large cache. Concluding remarks and future
work appear in Section VI.

II. RELATED WORK

Distributed Denial of Service (DDOS) attacks against net-
work devices, and in particular NIDS and WAF, are considered
one of the major threats with which these devices face. In
general, in DDOS, attackers try to consume the resources
of the device by sending huge amount of traffic that is
difficult for the device to analyze.More specifically, complexity
DDOS attacks [7] exploit gaps between the worst case and
average (or common) case performance to launch attacks
which result in either quality reduction or a complete denial
of service. It is known that such attacks are very effective
against regular expression matching algorithms, which are
closely related to the algorithms considered in this paper,
including the algorithm used by Snort NIDS [10], [18], [19].
The common characteristic of these attacks, as well as other
complexity attacks (e.g., [3], [7], [16], [19]), is that they
leverage the performance gaps within the algorithm itself (e.g.,
the algorithm has sub-linear running time on some inputs and
exponential time on the other). Our paper takes a system point
of view and considers the interaction between the system and
the algorithm, and in particular the effect of the cache on the
performance of the algorithm. It is important to note that the
only work that deals with caches and complexity attacks was
on the linux route-table cache [24]; however, in that work the
cache was implemented as part of the algorithm and not as
part of the system architecture.
Our paper focuses on DPI solution in software for exact

string matching, and particularly on the influence of the
data structure memory footprint on the performance. Other
common DPI solutions use dedicated hardware such as FPGA,
ASIC, or TCAM. There is an extensive line of research on
compressing DPI solution (either exact pattern matching or
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regular expression) for hardware implementation [2], [4], [9],
[13]–[15], [17], [21]–[23], [25], but these solutions are not
applicable in our context (since they were tailored for hardware
implementation), although some (e.g., [2], [13]) deal with
impact of the transitions encoding of DFA. In our context,
the most relevant paper is of Tuck et al. [22], which focuses
on improving Aho-Corasick algorithm in hardware, but also
shows that such compression solutions do not drastically effect
the memory performance in software. Therefore, the authors
conclude that such solutions should be take into considera-
tion also in software. Our compression techniques reduces
the space by 60% than the solution proposed in [22]. In
addition, Tuck et al. also analyze the worst-case performance
degradation, however their worst case scenario was not tailored
to the system architecture, and especially to the influence of
the cache, and hence shows only minor degradation, while
our worst-case scenario shows a major adverse impact on the
performance.

III. THE AHO-CORASICK ALGORITHM
The Aho-Corasick algorithm works by traversing a DFA

whose construction is done in two phases. First, the algorithm
builds a trie of the pattern set: All the patterns are added from
the root as chains, where each state corresponds to a single
symbol. When patterns share a common prefix, they also share
the corresponding set of states in the trie. In the second phase,
additional edges are added to the trie. These edges deal with
situations where the input does not follow the current chain
in the trie (that is, the next symbol is not an edge of the trie),
and therefore, we need to transit to a different chain. In such
a case, the edge leads to a state corresponding to a prefix of
another pattern, which is equal to the longest suffix of the
previously matched symbols.
Formally, a DFA is a 5-tuple structure 〈S,Σ, s0, F, δ〉, where

S is the set of states, Σ is the alphabet, s0 ∈ S is the initial
state, F ⊆ S is the set of accepting states, and δ : S×Σ &→ S
is the transition function. It is sometimes useful to look at
the DFA as a directed graph whose vertex set is S and there
is an edge between s1 and s2 with label x if and only if
δ(s1, x) = s2. The input is inspected one symbol at a time:
Given that the algorithm is in some state s ∈ S and the next
symbol of the input is x ∈ Σ, the algorithm applies δ(s, x)
to get the next state s′. If s′ is in F (that is, an accepting
state) the algorithm indicates that a pattern was found. In any
case, it then transits to the new state s′. Upon beginning of
the input, the algorithm is in state s0.
We use the following simple definitions to capture the

meaning of a state s ∈ S: The depth of a state s, denoted
depth(s), is the length (in edges) of the shortest path between
s and s0. The label of a state s, denoted label(s), is the
concatenation of symbols of the edge of the shortest path
between s0 to s.

IV. AHO-CORASICK’S AUTOMATA REPRESENTATIONS
The DFA is encoded and stored in memory, which is

accessed by the AC algorithm when inspecting the input. A
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Fig. 2. An example of the AC automaton for pattern-set
{E,BE,BD,BCD,CDBCAB,BCAA}.

naı̈ve approach is to store the set of transitions in an |S|× |Σ|
matrix, where the cell at position (i, j) holds the value of
δ(i, j). Hence, the width of each such cell is (log2 |S|). In the
typical case, when the input is inspected one byte at a time, the
number of edges, and thus the number of entries is 256|S|. For
example, Snort patterns require 75.15 MB for 31,094 patterns
that translate into 77,182 states (see Section V).

A. Failure-transitions–based Implementations
An alternative approach is to store only the original trie

which was used in the first phase of the DFA construction.
The transitions which are the edges of the trie are called
forward transitions, and each one of them links a state of
some depth d to a state of depth d+1. In addition, one should
add a failure transition to each node of that trie, in order to
capture implicitly the DFA transitions that are not trie edges:
the failure transition of a state s is to state s′ such that label(s′)
is the longest suffix of label(s) among all DFA states. Note
that label(s0) = ε (that is, the empty word) is a suffix of
all other labels, and therefore, the failure edges are properly
defined. The longest failure path (namely, a path that consists
of failure transitions only) that starts at state s is of length of
at most depth(s). This, in turn, implies that the total number of
transitions (both forward and failure transitions) is at most as
twice as the number of inspected symbols. Fig. 2 depicts an
AC automaton used for patterns {E,BE,BD,BCD,CDBCAB,
BCAA} over alphabet Σ = {A,B,C,D,E}, where the solid
edges are forward transitions and the dotted edges are failure
transitions (for clarity, failure transitions to s0 are omitted).
For each symbol x and current state s, one should first

determine whether the transition (s, x) is a forward transition
(and therefore encoded explicitly) or not. This operation
depends on the specific implementation of a state. In this
paper we consider three such implementations, that trade
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memory footprint size with processing time (see [2] for more
information)
Lookup Table Encoding: Each state holds an array of |Σ|
entries, such that the ith entry holds the next state to transit
to, had the symbol was i. If the corresponding transition is
a failure transition, the next state that is encoded is an inter-
midate state, as explained above. Notice that if all the states
are encoded as lookup table, there is no advantage over the
naı̈ve matrix encoding. However, most implementations use
lookup tables to encode states with high out-degree (namely,
states that many forward transitions originate from them). In
the rest of the paper, we set the threshold for encoding states
as lookup tables to 64 outgoing forward transitions.
Linear Encoding: Each state holds an array of symbol-state
pairs. The number of pairs is as the number of forward
transitions from the state. To find the next state, one should
iterate over the array of pairs and find the one that corresponds
to the current symbol. If no such pair is found, the failure
transition, which is stored separately, should be taken.
Bitmap Encoding [22]: Each state holds a bitmap of length
|Σ| bits, such that the ith bit is set if and only if there
is a forward transition from the state with symbol i. In
addition, the state holds an array of states, such that one entry
corresponds to each forward transition, sorted by the values
of the corresponding symbols. When encountering a symbol
x, one first checks the corresponding bit (in the bitmap). If it
is zero, then the failure transition (stored separately) is taken.
Otherwise, let j be the number of 1-bits prior to index x. The
next state is the (j+1)th entry in the array of states. Notice
that unlike linear encoding, in bitmap encoding we store only
the states and not symbol-state pairs. In addition, counting the
number of 1-bits in a bitmap can be done relatively cheaply
with the popcnt assembly command, implemented in SSE
4.2 instruction set (available, for example, in Intel’s core i7).
Unlike the naı̈ve implementation, in failure-transition–based

implementations nodes have different sizes. Thus, one needs
to store a pointer (of width 32 or 64 bits, depending on the
environment) to the node’s memory location rather than its
index (e.g., of width 17 bits for Snort). A simple way around
this problem is to add a global conversion table with |S|
entries, such that entry i holds the memory location corre-
sponding to state si. This conversion table reduces the memory
footprint significantly albeit with an additional memory access
per (explicit or failure) transition.

B. Path Compression
A common approach to improve performance of trie traver-

sal is an efficient representation of one-way branches; namely,
a sequence of consecutive states in the trie, such that each
state in that sequence (except, maybe, the last one) has only
one forward transition. Such approach lies at the core of the
seminal PATRICIA trie algorithm [12]. However, this approach
is not directly applicable in our case, since one may traverse
the trie over failure transitions, and these transitions should
also be taken into account when compressing the branches.
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Fig. 3. The automaton of Fig. 2 after path compression.

Tuck et al. [22] were the first to consider path compression
for AC-like automaton. Their solution, which was intended for
hardware implementation, suggested to compress each one-
way branch of a fixed length (e.g., 4) to a single transition.
In order to deal with failure transitions that go to the middle
of a compressed branch, the authors suggested to add a 2-bit
skip counter to each failure transition, indicating how many
input symbols should be consumed when taking this failure
transition.
While this approach is correct and captures the essence

of one-way branches compression, one can do better when
implementing the pattern matching algorithm in software. We
suggest to compress one-way branches of any length. On the
other hand, since such compression implies an unbounded
skip counter width, we compress only branches whose states
have a single outgoing forward transition and no incoming
failure transitions. Thus, failure transitions lead only to the
beginning of branches and the skip counter is redundant. In
addition, path-compressed nodes have several outgoing failure
transitions: one for each original (i.e., pre-compression) state.
Our results shows that this approach reduces the memory

footprint of real-life data-sets by approximately 25% over the
compression achieved by Tuck et al. (the specific numbers
depend on the state implementation as discussed in Sec-
tion IV-A). Moreover, path compressions reduces the number
of trie nodes by about 85%: for the Snort IDS, the number
of states is reduced from 77,182 to 11,927. Fig. 3 depicts our
toy example automaton after path compression. In the branch
corresponding to pattern CDBCAB (states s0, s7 − s12), the
first two states (s7 and s8) are not compressed since they have
incoming failure transitions. States s9 − s12 are compressed
(to state s′9) and the transition from s8 to s′9 corresponds
to the pattern BCAB. In case there is a partial match for
the string BCAB in s8, the outgoing failure transition that
corresponds to the longest prefix of BCAB is taken. The
strings correspond to these different failure transitions appear
in Fig. 3 in parenthesis.
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C. Leaves Compression
By definition, trie leaves do not have any forward transi-

tions, implying they consist only of a single failure transition,
which is taken every time the corresponding state is reached.
In addition, by the AC’s DFA construction, these leaves
correspond to accepting states of the automaton (i.e., states
in F ). Thus, the whole purpose of these state is to indicate
that a match was found. A simple way to reduce the number
of states in the trie is therefore to push this indication to the
penultimate node, just before the leaf node is reached. This is
done by adding one bit for each forward transition in a node,
indicating whether it leads to an accepting state. Then, all
leaf nodes can be eliminated while their failure transitions are
copied to the corresponding penultimate nodes as their new
forward transitions. Furthermore, this process can be repeated
recursively, until there is no transition to a leaf.
To apply both path compression and leaves compression, we

add one bit for every symbol of the corresponding compressed
path. The bit of the ith symbol of the path is set to 1 in two
cases: (i) when a transition with the first i symbols of the path
is to an accepting state (in the pre-compressed automaton), or
(ii) if the failure transition of the pre-compressed state reached
after the first i symbols of the path, is to a leaf. This way,
any pattern that should be matched during the traversal of the
compressed path is found.
Leaves compression has relatively small influence on the

number of nodes, since many of them were already com-
pressed in the path compression phase. For Snort IDS, this
compression reduces the number of nodes by 503 and the
memory footprint by additional 3%. However, this compres-
sion has another positive effect, since it reduces the number
of transitions taken when traversing the automaton.
In Fig. 4, we denote with an asterisk transitions that also

indicate a match. The following states are eliminated in this
stage: s1, s3, s4, s6, s′9, and s14. Their failure transitions are
copied (as forward transitions in the predecessor state) to
s0, s0, s0, s8, s2, and s0, respectively. Notice that when com-
pressing the state s3 there is a recursive compression: the
original failure transition of s3 was to s1, however since s1 is
also eliminated, the corresponding forward transitions (from
s2) is to s0.

D. Pointer Compression
A key observation that is common to AC-like DFAs is

that there are many transitions that go to states whose depth
is small. Specifically, in the Snort DFA, 31% of the failure
transitions go to states whose depth is 1, while additional
35% of the failure transitions go to states whose depth is 2.
Therefore, by representing these states in a compact manner,
we can significantly reduce the memory footprint.
More specifically, we suggest to use variable-size pointers

of two lengths: 2 and 2 + (log2 |S|). The first two bits of the
pointer indicates the action that should be taken:
00: Go to state s0.
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Fig. 4. The automaton of Fig. 2 after path compression and leaves
compression.

01: Go to the state whose label is the current symbol. A
table (with |Σ| entries) translating one-symbol labels to
their corresponding states is stored globally.

10: Go to the state whose label is the concatenation of the
last symbol and current symbol. Since a direct-lookup
table should have |Σ|2 entries, we store the translation
information in a global hash-table whose keys are two-
symbol pairs and values are the corresponding states
(of depth 2). Our results shows that, for Snort’s DFA,
there are only 1524 valid key-value pairs in the hash
table (out of over 65K possible pairs).

11: Go to the state encoded in the next (log2 |S|) bits. This
prefix indicates a regular pointer.

Pointer compressions achieve a significant reduction in the
memory footprint. Our results shows an improvement of addi-
tional 43% over the path-compressed data structure described
in Section IV-C. For example, in the automaton depicted in
Fig. 4, states s2 and s7 appears in the table corresponds to
depth 1 (in the second and third entries, all the other entries
are null); states s5 and s8 are stored in the hash-table with
keys BC and CD, respectively. State s13 is encoded directly.

E. Compression Using Huffman Coding
Huffman coding [11] may improve the compression of

linear-encoded and path-compressed states by reducing the
memory required to explicitly store symbols within such states.
In general, Huffman coding allocates short code for frequent
symbols and long code for infrequent ones. Thus, reducing the
average per-symbol memory requirement. In our case we first
compute offline the frequency of each symbol (as it does not
depend on the input traffic). Then, a lookup table is used to
provide symbol-to-Huffman-code conversion.
Our computations show that this technique can save up

to 10% more space when using linear encoding and path
compression. However, since this is a very limited additional
compression, while incurring extra processing, we did not
implement this technique while performing our experiments.
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V. EXPERIMENTAL RESULTS
We have implemented a prototype of the system written in

C, running on Unix systems. The prototype software creates
the data structures from a given pattern set and then runs the
matching algorithm on a given packet trace. In this section, we
present the execution results under different configurations and
types of traffic, and compare them to the throughput achieved
by a naı̈ve implementation of a deterministic AC automaton.

A. Test Setup and Traffic Types
We use two test environments: a Macbook Pro with Core 2

Duo 2.53GHz (dual core), 32KB L1 data cache, and 3MB L2
cache; and an iMac with Core i7 2.93GHz (quad core), 32KB
L1 data cache, 256KB L2 cache (per core), and 8MB L3 cache
(shared). Both systems run OS X Snow Leopard 10.6.
To test different sizes of pattern sets we use two common

pattern sets: Snort [20] and a partial2 ClamAV [6]. We compare
the throughput of each configuration when used on each
pattern set. The prototype software loads packets payload from
the disk to the main memory in advance and then uses one or
more threads to scan these packets with the pattern matching
algorithm. We show results for several number of scanning
threads for each configuration.
We test the different configurations of the algorithm using

a real-life traffic trace from DARPA [8]. In addition, we
define two types of adversarial traffic patterns with which
we test each configuration. First, we look at a traffic pattern
that intends to make the most exhaustive traversal of the
automaton. To create such traffic, we use the pattern-set itself
and randomly concatenate patterns to each other with some
delimiter character in between them. This kind of traffic will
make the automaton visit a large number of states and thus
reduce locality and may increase the number of cache misses.
The second type of adversarial traffic pattern aims to traverse
as much failure-paths as possible. To do this, we find all the
states whose longest failure path is of length that is equal to
their depth. There are 4,188 and 14,522 such states in Snort
and partial ClamAV, respectively. Then, we concatenate the
states’ labels in a random order, adding a delimiter character
(which does not cause any forward transition) in between.

B. Results
1) Space Requirement: Table I shows the space requirement

of each data structure for both Snort and ClamAV. In all
compressed implementation we performed path, leaves, and
pointer compressions, and therefore, the difference is solely in
the implementation of the non–path-compressed states, as pre-
sented in Section IV-A. In addition, as discussed before, states
with more than 64 forward transitions are always encoded
using a lookup table. In our experiments, most of the nodes of
the automaton are path-compressed. More specifically, 79.9%
of the nodes of Snort automaton and 92% of the nodes of
ClamAV automaton have exactly the same implementation.

2Due to a limitation in the prototype implementation and as we mainly
focused on smaller pattern sets, we used only about 50% of the ClamAV
signatures. The result AC automaton has 745,303 states in it.

TABLE I
THE MEMORY FOOTPRINT OF THE DATA STRUCTURE REQUIRED FOR EACH
CONFIGURATION. BYTES PER SYMBOL IS THE RATIO BETWEEN THE SIZE
OF THE DATA STRUCTURE AND THE TOTAL NUMBER OF SYMBOLS IN THE

PATTERN-SET

Pattern Implementation Size (MB) Bytes/
Set Symbol

Snort
Compressed

Linear Encoding 0.34 3.23
Bitmap Encoding 0.41 3.89
Lookup Table 1.52 14.44

Non- Linear Encoding 1.30 12.36
Compressed Naı̈ve 75.15 714.04

Compressed
Linear Encoding 2.46 3.09

Partial Bitmap Encoding 2.59 3.25
Lookup Table 5.02 6.31

ClamAV Non- Linear Encoding 11.90 149.50
Compressed Naı̈ve 722.14 907.24

This fact also explains the relatively small change between
the different implementations in terms of time and speed.
The naı̈ve implementation stands for the two-dimensional
table representation, as discussed in Section IV. The non-
compressed linear encoding implementation is the failure-
transitions–based implementation whose nodes are linear en-
coded, without compression (see Section IV-A).
2) Throughput: Fig. 5 shows the throughput achieved by

each configuration, with Snort and ClamAV pattern-sets, on
the dual core system. On real-life traffic, the advantage of
the naı̈ve AC algorithm is clear. However, its performance
is very unstable. It is very sensitive to both pattern-set size
and structure, and to the type of input traffic. Changing the
pattern-set from Snort to ClamAV reduces its performance by
38%-44%. Exhaustive traversal adversarial traffic drops its
performance by 73%-88% (e.g., in case of Snort with a single
thread the throughput drops from 799 Mbps to 93 Mbps; see
Fig. 5 for other configurations). Our technique shows much
greater stability, and it is most sensitive to the failure-paths
traversal traffic which induces a performance degradation of
about 30% for Snort and between 20% to 50% for ClamAV.
3) Cache: In order to measure memory accesses and cache

misses we used the Cachegrind [5] tool. We focus on the
data memory read accesses and misses and ignore write
accesses and misses and instruction cache misses as these are
negligible. Fig. 6 shows the average number of data memory
read accesses that the prototype implementation performs per
input symbol, for each algorithm and traffic pattern, when
using the Snort pattern-set. This figure motivates the great
performance advantage of the naı̈ve AC algorithm over our
technique when scanning real-life traffic; this advantage stems
from the fact that in real-life situations the automaton is, most
of the time, in low-depth states, implying that only very small
part of the automaton (that fits in L2) is used frequently.
Fig. 7 shows the L1 data cache miss rates for Snort

(ClamAV has a similar behavior which is omitted for brevity).
The L2 miss rate (not presented here) of the naı̈ve imple-

mentation is only 0.7% on real-life traffic. However, when
operating on adversarial traffic, the L2 miss rate gets much
higher to 23% and thus can explain the major slowdown.
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Fig. 5. Throughput of each configuration with different pattern-set and different traffic type
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Fig. 6. Average number of memory read accesses per input symbol, for the
different configurations and traffic data with Snort pattern-set, using a single
thread.

On the other hand, as our techniques produce much smaller
data structures, they tend to remain in L2 most of the time,
especially when the pattern-set size is moderate (for Snort, the
maximum L2 miss rate among all our techniques is 0.06%,
when using lookup table encoding and scanning exhaustive
traversal traffic).
4) Larger Cache: To verify that the cache is the cause for

the severe slowdown of the naı̈ve implementation on adversary
traffic, we have used a stronger system with Core i7 processor,
which has much larger cache. In addition to a larger cache,
it also has four cores (instead of two), where each core is
slightly faster. Fig. 8 shows the throughput on this system with
Snort pattern-set. Clearly, the naı̈ve implementation achieves
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Fig. 7. L1 data cache miss rate of each configuration with Snort pattern-set
and different traffic type, using a single thread

significantly higher throughput. However, even on this system,
adversarial traffic reduces its performance by 56% (from
2.064 Gbps to 904 Mbps). This is still a high rate comparing to
our technique. Nevertheless, had the pattern matching process
not been the only process to use the CPU and its cache, this
advantage would have lost due to more cache misses.

VI. CONCLUSIONS
DPI is a critical component in next generation network ap-

plications, such as security, content filtering, traffic monitoring,
load balancing, etc. This paper sheds light on the performance
of DPI using software implementation of the seminal AC pat-
tern matching algorithm. The paper shows that implementation
details of the algorithm and the system environment have
high impact on the performance and space requirement of the
algorithm. We demonstrate the role of the system cache in the
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Fig. 8. Throughput of each configuration with different traffic type on the
Core i7 processor, with Snort pattern-set. In L2, all implementations of our
approach has a miss rate of less than 1%.

performance of AC algorithm and show that, if implemented
naı̈vely, the real-time throughput is ten times larger than the
worst-case throughput. Hence, although AC algorithm has a
deterministic one memory reference per char cost, in real-life
an attacker can exploit the interaction between the algorithm
to the system and launch complexity algorithmic attack against
the DPI software. As far as we know, we are the first to
show that complexity attack, which takes into consideration
the system architecture, (specifically, the cache) can have such
a high impact. Using compression techniques, we demonstrate
that we can ensure that the whole data structure can fit into
the cache, requiring less than a 3.25 bytes per symbol. While
such a compression imposes some penalty in performance,
the compressed solution is more stable, implying that the
worst-case and common case are similar. Thus, compressed
implementation should be considered as an important option
when aiming at a stable and secure system with guaranteed
worst-case performance and moderate memory requirement.
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